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Abstract

The NASA Langley MDO method evaluation
study seeks to arrive at a set of guidelines for using
promising MDO methods by accumulating and an-
alyzing computational data for such methods. The
data are collected by conducting a series of re-
producible experiments. In the �rst phase of the
study, three MDO methods were implemented in the
iSIGHTz framework and used to solve a set of ten rel-
atively simple problems. In this paper, we comment
on the general considerations for conducting method
evaluation studies and report some initial results ob-
tained to date. In particular, although the results are
not conclusive because of the small initial test set,
preliminary numbers suggest that the performance
of the methods tends to be consistent with their pre-
dicted theoretical properties.
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Introduction

Multidisciplinary Design Optimization (MDO)
problems are optimization problems that describe
complex coupled engineering systems. The systems
are composed of physically interacting subsystems de-
scribed by disciplinary analyses, each of which pos-
sesses a certain degree of autonomy but depends on
other subsystems via a number of couplings, also
known as interdisciplinary variables.

We distinguishMDO formulations from optimiza-

tion algorithms in the following way. MDO formula-
tions belong to an area that studies MDO problem
de�nitions, including problem decomposition and in-
tegration. To analyze an MDO formulation, one con-
siders such attributes as consistency, equivalence to

other formulations, optimality conditions, and sen-
sitivity of solutions to various perturbations. Opti-
mization algorithms are used to solve a particular
MDO formulation. It is then appropriate to speak
of local convergence rates and of global convergence
properties of an optimization algorithm applied to a
speci�c formulation. An analogous distinction exists
in the �eld of partial di�erential equations. On the
one hand, equations are analyzed in terms of regu-
larity, well-posedness, and the existence and unique-
ness of solutions. On the other, one considers numer-
ous algorithms for solving di�erential equations. The
area of MDO methods studies MDO formulations
combined with optimization algorithms, although at
times the distinction is blurred. It is important to
note that an optimization algorithm applied to two
formulations that are mathematically equivalent in
terms of solution sets may exhibit drastically di�er-
ent behaviors [1]. When we say \MDO methods" in
this paper, we focus more on formulations, although
optimization algorithms play a role as well.

A sizable and ever growing body of methods and
their variants has been proposed for solving MDO
problems. Yet, there is much speculation, but limited
computational or analytical substantiation of practi-
cal applicability and algorithmic properties of MDO
methods. An informative computational method
study|of di�erent scope and intent|was done by
Shubin [2]. Haim et al. [3] compare performances
of several nonlinear programming software packages
on an MDO problem, given one speci�c formulation.
However, in general, a practitioner of MDO has little
basis for selecting a method among those appearing
in print.

Several ongoing e�orts at NASA Langley are
aimed at addressing this de�ciency. The present pa-
per will acquaint the reader with the initial results of
the �rst phase of a method evaluation study initiated
last year. The objectives of the study are as follows:
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� Accumulate computational data on the perfor-
mance of promising MDO methods.

� Compare the practical performance of the
methods with their proven or conjectured an-
alytical properties.

� Arrive at a classi�cation of the methods and
problems amenable to the methods, as well as
a set of guidelines for using speci�c methods.

� Establish \standards" or guidelines for system-
atic, easily reproducible, method testing proce-
dures.

We consider the last objective exceedingly im-
portant. Numerical results presented in publications
about MDO methods are rarely easily reproducible
by other researchers. This may be due to legitimate
reasons, such as the complexity or unavailability of a
particular commercial or proprietary code to a spe-
ci�c user. Nonetheless, the lack of at least a minimal
set of easily reproducible results makes comparison,
validation, and evaluation of methods extremely di�-
cult, if not impossible, because one can always argue
that a particular result is due strictly to an implemen-
tation and not to an intrinsic property of a method
under consideration. A remedy is, of course, to ascer-
tain that the test can be replicated at least for simple
problems, thus providing a basis for legitimate discus-
sions of implementations vs. method properties.

Our objectives present a formidable task, since
comparingmethods intended for solving even the con-
ventional nonlinear programming problem is notori-
ously di�cult, given the limitations of the problem
selection, the implementation, and many other vari-
ables. However, our aim is not to declare one method
superior to another. Instead, by accumulating com-
putational data, we seek to understand under what
circumstances the use of a speci�c method may be
advisable.

In this paper, we comment on testing, in general,
and describe our testing procedures and their limita-
tions, in particular. We give detailed results for one
test problem, followed by a summary of numerical re-
sults for all problems, as well as conclusions available
to date.

A record of all tests and numerical results can be
found in a forthcoming NASA contractor report [4].
A complete record of all tests, codes, and descrip-
tion �les can be found at the NASA Langley Multi-
disciplinary Optimization Branch (MDOB) method
evaluation site accessible via the MDOB homepage

(http://fmad-www.larc.nasa.gov/mdob/MDOB/).x

Interested readers are invited to make contributions
to this site after familiarizing themselves with the
submission requirements.

MDO Methods

During Phase I of the study, we collected numer-
ical data on the Multidisciplinary Feasible method
(MDF), the Collaborative Optimization approach
(CO), and the Individual Discipline Feasible method
(IDF). MDF is a mathematical idealization of the
conventional approach to MDO. The nomenclature
was introduced by Cramer et al. [5]. MDF was im-
plemented to serve as a baseline result in this study.
Antecedents of CO [6] and IDF [5] can be traced to
work on optimization of large systems, such as that
of Wismer [7] and Lasdon [8]. Both CO and IDF
are aimed at solving large problems with a narrow
bandwidth of coupling.

To give a brief description of the methods under
study, we state the MDO problem as a nonlinear pro-
gramming problem of the following form:

minimize f(x; u(x))
subject to h(x; u(x)) = 0

g(x; u(x)) � 0;
(1)

where, given a vector of design variables x, the state
variables u(x) are de�ned via a block system of equa-
tions,

A(x; u(x)) =

0
B@

A1(x; u1(x); : : : ; uN(x))
...

AN (x; u1(x); : : : ; uN (x))

1
CA = 0;

where N is the number of blocks. In the context of
MDO, the blocks of the system usually represent the
state equations for the disciplinary analyses and the
necessary interdisciplinary couplings. The equations
are known as the Multidisciplinary Analysis (MDA)
system.

Multidisciplinary Feasible Method

The MDF formulation is a conventional method
for solving problem (1). It is an example of the vari-
able reduction approach to nonlinear programming,
where only the design variables x are used as inde-
pendent optimization variables. The statement of the
problem is unchanged from formulation (1). There-
fore, theoretically, the convergence properties of any
optimization algorithm applied to MDF are just its

xAs the paper is going to press, the NASA Langley web site is being reorganized. If the link is inoperative, please search for

keywords.
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convergence properties with respect to conventional
nonlinear programming problems.

At each iteration of the optimization procedure,
the design variable vector x is input into the MDA
system. The system is then solved for the state
vector u, thus reducing the dimension of the opti-
mization problem. The solution of the MDA system,
i.e., the multidisciplinary function evaluation, is fre-
quently performed via the block Gauss-Seidel proce-
dure (�xed-point iteration). The MDA system can
be, in principle, solved by any method for solving
nonlinear equations, such as the Newton's method.
One should note, however, that unless a globaliza-
tion strategy is used, there is no guarantee that a
method for solving nonlinear equations will solve the
MDA problem from arbitrary initial points.

MDF has been in use ever since nonlinear pro-
gramming techniques were �rst applied to engineer-
ing optimization problems and, hence, is well un-
derstood. It makes full use of the existing analy-
sis codes and gives rise to the smallest optimization
problems in terms of the number of design variables.
At each iteration of optimization, multidisciplinary
equilibrium (or feasibility) is maintained via MDA.
The term \Multidisciplinary Feasible" refers to this
property. Given a careful statement of a particular
problem and a good optimization algorithm applied
to the formulation, MDF can be e�cient.

The main drawback of MDF is its extreme ex-
pense. First, the method is costly to implement, be-
cause a practitioner of MDO has to face the di�-
cult problem of analysis integration. Second, a com-
plete MDA must be done not just at every iteration,
but also for computing derivatives, if �nite-di�erence
derivatives are used. Moreover, optimization algo-
rithms applied to MDF are sensitive to the conver-
gence of MDA, in general, and the �xed-point itera-
tion, in particular, which may be detrimental to the
robustness of the method and its speed. Finally, the
method is not immune to failing because of attempts
to process points that cannot be analyzed.

Collaborative Optimization

In the CO approach, problem (1) is decomposed
into a number of subsystems, usually along the disci-
plinary lines. The problem is then reformulated as a
bilevel programming problem.

A system objective f is selected for the system
level. The system-level constraints are the so-called
\compatibility" or \coupling" constraints designed to
bring the system into multidisciplinary equilibrium.
The values and derivatives of the compatibility con-
straints are computed by solving the lower-level, sub-

system optimization problems.
The subsystem problems, generally solved in par-

allel, are nonlinear programming problems whose ob-
jective is to minimize the discrepancy between the
shared variables of the subsystems while satisfying
the disciplinary constraints.

Braun et al. [9] comment on implementation and
performance features of CO. A detailed discussion of
CO's analytical and computational properties can be
found in Alexandrov and Lewis [1]. The latter work
contains complete, precise notation of CO and a sim-
pli�ed notation useful in initial implementation. We
use the simpli�ed notation here.

Assume that for each disciplinary subsystem i,
given a vector of design variables xi, the correspond-
ing vector of responses ui(xi) is computed via the
analysis Ai, and the constraints

gi(xi; u(xi)) � 0; i = 1; : : : ; N;

must be satis�ed, where each gi(x) is a vector. The
vectors xi pertaining to disciplines i are not necessar-
ily disjoint subsets of the complete vector of design
variables x. Then auxiliary vectors �i and �i are in-
troduced to represent the shared components of xi
and ui at the system level.

The system-level optimization problem of the CO
formulation has the form

minimize f(�; �)

subject to C(�; �) = 0;
(2)

where C(�; �) is the system of N compatibility con-
straints ci(�i; �i), each one having the form

ci(�i; �i) =
1

2
[k �i � x�i k

2 + k �i � ui(x
�

i ) k
2];

where x�i is the solution of the i-th subsystem opti-
mization problem:

minimize 1

2
[k �i � xi k

2
+ k �i � ui(xi) k

2
]

subject to gi(xi; u(xi)) � 0:

The actual system compatibility constraint can be
stated as a sum of the individual constraints. Other
forms of the system-level compatibility constraints
and subsystem problems exist ([6], [10], [11], [12]),
but in Phase I, we focused on the CO formulation as
shown above, as it is the most promising one [1].

CO has a number of attractive features. First, it
dispenses with MDA. Instead of requiring multidis-
ciplinary feasibility at each iteration of optimization,
the feasibility is attained in the system optimization
problem via the introduction of compatibility con-
straints. Thus, each iteration is feasible with respect
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to individual analyses, but not multidisciplinary fea-
sible until a solution is reached.

CO has the very appealing attribute of disci-
plinary autonomy with respect to both the analyses
and optimization, resulting in a relatively easy proce-
dure for integration of the disciplinary analyses. The
analyses can be processed in parallel. Another signif-
icant feature is the maintenance of intradisciplinary
feasibility at each system iteration, which is impor-
tant from the application perspective. As MDF, the
method makes full use of the disciplinary analysis
software.

The limitations of CO have to do with attain-
ing multidisciplinary feasibility and with reformulat-
ing the original, conventional nonlinear programming
problem into a nonlinear bilevel programming prob-
lem.

In particular, the method is intended for prob-
lems where the interdisciplinary coupling has small
bandwidth. Problems with many couplings are not
expected to bene�t from this formulation. The for-
mulation has more optimization variables than that
arising from MDF, but given the �rst limitation, the
increase in the number of variables should not be
great, as the number of auxiliary variables depends
on the bandwidth of the coupling.

Further, the CO formulation is aimed at solving
a narrower class of problems than do MDF and IDF;
namely, it does not consider general constraints at
the system level. Technically, general constraints can
be included at the system level. Their inclusion tends
to impair the performance of the method, but is un-
avoidable at times. For instance, in one of our test
problems, the hub frame design, the objective is to
minimize the weight of the structure, subject to con-
straints on the translational and rotational displace-
ments, stresses in the frame members, and local buck-
ling of the frame members. The translational and
rotational displacements of the frame structure are
global responses and should not be treated as local
responses at the subsystem level.

Another limitation is that, despite maintaining
disciplinary autonomy, CO does not allow explicit
optimization with respect to disciplinary objectives
at the disciplinary level. Multiple disciplinary objec-
tives have to be incorporated at the system level.

The decomposition procedure may be dictated by
the application, but it presents a di�cult problem for
cases where structure is not well understood.

The \small bandwidth of coupling" feature sim-
ply limits the scope of problems amenable to CO. In
addition, CO su�ers from a di�culty that has to do
with reformulating a nonlinear programming problem
into a general, nonlinear, bilevel optimization prob-

lem. As such, CO is inherently di�cult to solve by
means of software intended for conventional, single-
level, nonlinear programming problems. While the
CO formulation is equivalent to the original nonlinear
programming problem with respect to the solution
sets, the formulation is not equivalent to the origi-
nal problem with respect to optimality conditions [1].
This is an example of two problem formulations that
are equivalent with respect to their solution sets, yet
are drastically di�erent numerically.

Based on theoretical analysis of CO [1], it is ex-
pected that much �ne-tuning would be required to
implement the method for a speci�c problem and
that convergence behavior of conventional optimiza-
tion methods applied to the CO formulation might
be erratic.

Individual Discipline Feasible Method

The IDF formulation provides another approach
to \breaking" the expensive MDA iteration. The
words \Individual Discipline Feasible" refer to main-
taining disciplinary feasibility at each optimization
iteration, but not multidisciplinary feasibility until a
solution is reached.

Various forms of IDF are described by Cramer et
al. [5] and Lewis [13]. To state the formulation, let
us assume that the system consists of two subsystems
and let us write the disciplinary analyses A1 and A2

in more detail as follows:

A(x; u(x)) =

�
A1(x; u1(x); u12(u2(x)))
A2(x; u21(u1(x)); u2(x))

�
= 0;

where uij represent the interdisciplinary 
ow of in-
formation from discipline j to discipline i. Then the
IDF formulation introduces auxiliary variables x12
and x21, and the optimization problem can be stated
in the following form:

minimize f(x; u1(x1; x12; u2(x; x21)))
subject to x12 � u12(u2(x; x21)) = 0

x21 � u21(u1(x; x12)) = 0
h(x; u1(x1; x12; u2(x; x21))) = 0
g(x; u1(x1; x12; u2(x; x21))) � 0;

where, u1(x; x12) and u2(x; x21) are computed by
solving the disciplinary equations

A1(x; u1(x; x12); x12) = 0

A2(x; x21; u2(x; x21)) = 0:

Thus, the IDF formulation is a single-level, nonlinear
optimization problem.

On the positive side, IDF is trivially equivalent to
the original nonlinear programming problem and is
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thus easy to analyze. That is, the optimality condi-
tions of the original problem hold for the IDF formu-
lation. The convergence properties of optimization
algorithms applied to IDF are those of the algorithms
applied to conventional nonlinear programming prob-
lems. Given a good solver for equality constrained
optimization problems, the method is expected to be
e�cient.

IDF assures full use of disciplinary analysis soft-
ware.

Similarly to CO, IDF is intended for problems
with small bandwidth of interdisciplinary coupling,
and the problem of decomposition is similar to that
of CO. Unlike CO, IDF is not limited to problems
without general constraints at the system level.

Also similarly to CO, formulations that arise from
IDF have more optimization variables that those aris-
ing from MDF.

Importantly, although IDF maintains autonomy
with respect to analyses, it lacks CO's autonomywith
respect to disciplinary optimization. That is, while
the analyses are performed autonomously during the
analysis stage, the coupling is restored during the op-
timization step computation. This brings back the
di�culties of integration.

Another weakness of IDF is its treatment of the
disciplinary constraints. They are either ignored in
descriptions of the formulation or simply relegated to
the system, despite the need to handle disciplinary
constraints at the disciplinary level|a wish usually
expressed by practitioners of MDO.

Approach

We selected initial sets of ten problems, three
methods, and a set of metrics to record during data
collection. During Phase I, all methods were imple-
mented in iSIGHT, which is a computational frame-
work for multidisciplinary design optimization, pro-
duced by Engineous Software, Inc. The data have
been compiled and preserved for evaluation. The
iSIGHT problem description �les are available to any-
one who would like to duplicate the results or improve
on them.

There has been much recent work in the area
of approximations for engineering optimization, and
Collaborative Optimization has been reported ([14],
[15]) to show improvement due to the use of response
surface methodology. In this study, we have not at-
tempted to use approximations.

Implementation and Its Limitations

In this study, we are concerned with evaluating

MDO methods, which is a notion composed of \for-
mulations" and \algorithms". A formulation is a
statement of the problem to be solved by an opti-
mization algorithm. An algorithm is then a set of
steps performed to solve a formulation. The two are
very much interrelated, and are even di�cult to dis-
tinguish for some methods. MDF, CO, and IDF are
all formulations, but they each may be implemented
in a variety of ways and their evaluation will be af-
fected by the use of speci�c optimization algorithms.
This makes the evaluation extremely di�cult. How-
ever, trends in performance can still be discerned.

The implementation of the methods and the prob-
lems, as well as the software used to solve the prob-
lems, have a direct bearing on the performance of the
methods. Moreover, we understand completely that
to use a particular method to its full advantage, es-
pecially a method for solving problems as di�cult as
those that arise in MDO, one will, by necessity, per-
form a signi�cant amount of �ne-tuning, both in the
problem statement and in all areas of implementa-
tion.

Taken to its extreme, however, this principle
means that, given any problem and any initial
method, with a su�cient amount of time the method
can be \�ne-tuned" so that the problem can be solved
with reasonable e�ciency. The danger of such an
extreme is that what practically amounts to a new
method has to be developed for each problem. The
questions are then whether an original method can
still be discerned after such an exercise and just how
much of �ne-tuning is required to produce reasonable
performance.

An important consideration in making decisions
about �ne-tuning is the available resources for solv-
ing a speci�c problem. If an expensive problem will
be solved many times, it makes sense to �ne-tune the
method and the problem to assure optimal perfor-
mance. However, in some projects, it is anticipated
that the problem under consideration will be solved
only a few times due to its extreme expense. In such
cases, one cannot a�ord �ne-tuning and one has to be
reasonably certain of a method's robustness before its
application.

With this in mind, we made a decision to avoid
�ne-tuning as much as possible in the �rst phase of
the study, in order to obtain an idea of what a reason-
ably intelligent user, who is not a method developer,
will face when implementing a speci�c method. In
further studies, a higher degree of �ne-tuning the im-
plementation is planned.

The choice of optimization software for solving the
formulated problems and subproblems was limited by
the set available in iSIGHT.
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Problem Title Source
1 Conceptual Ship Design [14]
2 Electronic Packaging [16, 17]
3 Power Converter [18, 16]
4 Speed Reducer [19, 16]
5 Combustion of Propane [20, 16]
6 Hear Dipole [20, 21, 16]
7 Hub Frame Design [16]
8 Isomerization of �-Pinene - Collocation Formulation [20]
9 Propane, Isobutane, N-Butane Nonsharp Separation [22]
10 Three-Component Separation [22]

Table 1: Test problem set for Phase I.

Problem 1 2 3 4 5 6 7 8 9 10
Method
MDF
# Variables 6 8 6 7 4 4 120 80 48 52
# Constraints 7 3 4 11 4 4 764 115 38 40
CO
System:
# Variables 11 5 6 2 4 8 40 { { {
# Constraints 5 2 6 3 2 6 6 { { {

# Subsystems 5 2 2 3 2 2 2 { { {
Total # subsystem variables 18 12 12 11 7 12 120 { { {
IDF
# Variables 14 12 12 { 6 8 { { { {
# Constraints 11 5 6 { 6 6 { { { {

Table 2: Problem dimensions.

Within that set, the choice was somewhat subjec-
tive and dependent on experience. At this stage, we
have not conducted conclusive studies on the sensi-
tivity of a particular formulation to the choice of the
optimizer.

All three methods were implemented in the
iSIGHT framework, using MDOL, the iSIGHT MDO
Language. The implementation was both eased and
made more di�cult because the methods were tested
within the iSIGHT framework. On the one hand,
the framework provided a uni�ed approach to testing.
On the other hand, iSIGHT is designed for handling
large, \production" problems, and there was signif-
icant overhead connected with coding smaller prob-
lems in the early stages of the study. In addition,
we were restricted to using the optimization software
available in iSIGHT for solving the optimization sub-
problems. Overall, we feel that at this initial stage,
the bene�ts of using iSIGHT outweighed the disad-
vantages of the additional work necessary to incorpo-

rate the problems and the methods into the frame-
work.

Implementation within iSIGHT also a�ected the
performance of the methods on some of the problems,
in that stand-alone implementation has resulted in a
much faster convergence. Future method evaluation
studies are planned both in and out of iSIGHT.

Given all the limitations, however, our results are
available for examination, as is all the software that
produced the results. Should the authors of a partic-
ular method or other researchers �nd that a certain
trend we discerned has to do strictly with our imple-
mentation and not with the innate properties of that
method, we welcome suggestions on how to make the
tests more informative.

Finally, promising methods evolve continually,
their implementation improves with increased under-
standing of their workings, and the di�culties appar-
ent at one stage of their development may disappear
at a more mature stage.
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Problems

The ten problems selected for Phase I of the study
are listed in Table 1. Earlier references exist for most
of these problems. We indicate the sources we used.
The reference for the MDOB Test Suite [16] is indi-
cated for all problems directly downloaded from that
set, but the primary reference for the problem is the
other reference.

At this stage, the problems are not representative
of realistic MDO applications. However, to actually
solve a realistic MDO problemmay require months or
even years, which would somewhat incapacitate the
e�ort. Therefore, we chose several tractable prob-
lems as an initial set we could easily handle. Some
of the problems, such as the Conceptual Ship Design
Problem, the Electronic Packaging Problem, and the
Hub Frame Problem, exhibit some of the salient fea-
tures of realistic MDO problems, albeit not their size,
complexity, or expense.

While a method cannot be judged applicable to
a realistic problem just because it performs well on
a toy problem, if it does not perform well on rela-
tively simple problems, that is an indication that the
method must be further studied before attempting to
use it for solving realistic problems.

During future studies, we plan to obtain numeri-
cal data on solving more realistic problems with the
methods that are deemed promising after this initial
testing. A summary of the problem dimensions is
given in Table 2. In cases where the problems were
found inappropriate for being solved by a speci�c
method, the table contains \|".

Note that the constraints of the system-level prob-
lem for CO are just the compatibility constraints.

Metrics

We have considered a number of metrics in eval-
uating the performance of the methods. Some of the
metrics are objective and quantitative, the others,
more subjective and qualitative. Discussion of some
of the metrics follows.

Generality. This is a measure of applicability of
a method to various classes of problems. Our prob-
lem pool is small at this stage, but as it grows, we
will classify the problems by their size in terms of vari-
ables and constraints, smoothness, nonlinearity, com-
plexity, strength and bandwidth of coupling, presence
of several objectives, and other features.

Robustness.Given that each method is designed
for solving a speci�c class of problems, this metric
evaluates the capacity of the method to provide a so-
lution or a \satisfactory" point for that class of prob-

lems for a variety of perturbed data. For the initial
set of problems that we considered, we measured ro-
bustness by attempting solution from several starting
points.

Another, somewhat subjective, but important
measure of robustness we considered was the amount
of �ne-tuning required to make a method produce an
answer. For instance, we considered restructuring the
problems in a number of ways, such as the incorpora-
tion of slack or squared slack variables, or changing
the tolerances on constraints and optimality.

Performance. Performance is a very complex is-
sue, strongly related to implementation, problem for-
mulation, and the nature of the problem. In Phase
I of the study, we quanti�ed performance as work

performed by each method during every optimization
procedure.

The recorded work consists of the total number of
analyses, with each \disciplinary" analysis counted
as one function evaluation. Function evaluations
computed during �nite-di�erence derivative compu-
tations are included. In particular, for MDF, we
report the total number of analyses, including the
average number of analyses taken during �xed-point
iterations in order to compute MDA, and those neces-
sary to compute the �nite-di�erence derivatives. For
CO, we report the number of iterations taken by the
system-level optimization problem, as well as the sum
of the function evaluations in each subsystem, includ-
ing those required for �nite-di�erence computations.
For IDF, we report the total number of function
evaluations, including those taken for �nite-di�erence
computations, times the number of the subsystems.

Although the dimensions of the design space dif-
fer for MDF, CO, and IDF, by reporting the total
number of analyses, we provide as complete a mea-
sure of work as possible, given the serious limitations
imposed by a speci�c implementation of the methods
and the problem formulations.

Example: Electronic Packaging

The Electronic Packaging problem ([16], [17]) con-
siders a circuit that comprises two resistors mounted
on a heat sink, resulting in two coupled subsystems:
electrical and thermal. Operating temperatures af-
fect component resistance, while resistance, in turn,
in
uences the temperature. The objective function is
watt density. The constraints require the operating
temperatures of resistors to be below a threshold tem-
perature and the currents through the two resistors
to be equal. The problem has eight design variables,
thirteen state variables, two parameters (voltage and
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Electrical SS Thermal SS
�

-

? ?

(x1; x2; x3; x4) (x5; x6; x7; x8)

Resistance: (u2; u3)

Temperature: (u11; u12)

Figure 1: Input-output diagram for the electronics packaging problem.

T �), and may be stated as follows:

maximize u1
subject to h1 = y4 � y5

g1 = u11 � 85:0 � 0
g2 = u12 � 85:0 � 0
0:050 � x1 � 0:15
0:050 � x2 � 0:15
0:010 � x3 � 0:10
0:005 � x4 � 0:05
10:00 � x5 � 1000:0
0:004 � x6 � 0:009
10:00 � x7 � 1000:0
0:004 � x8 � 0:009;

where the �rst constraint represents the branch cur-
rent equality, while the next two inequalities are the
component reliability constraints.

The eight design variables are as follows: x1 and
x2 are the heat sink width (m) and length (m); x3
and x4 are the �n length (m) and width (m): x5 and
x7 are the nominal resistance (
) of components 1
and 2, respectively, at temperature T �; x6 and x8 are
the temperature coe�cients (�K�1) of the electrical
resistance components 1 and 2.

The state variables are as follows: u1 is the watt
density (watt=m3); u2 and u3 are the resistances (
)
at temperatures T1 and T2; u4 and u5 are currents
(amps) in resistors 1 and 2; u6 and u7 represent
power dissipation (watts) in resistors 1 and 2; u8,
u9, and u10 are the total circuit current, resistance,
and power, respectively; u11 and u12 are the compo-
nent temperatures, T1 and T2 (

�C), of resistors 1 and
2; and �nally, u13 is the heat sink volume (m3).

The states are described by the following equa-
tions:

u1 = �u10=u13

u2 = x5(1:0 + x6(u11 � T �))

u3 = x7(1:0 + x8(u12 � T �))

u4 = u3u8=(u2 + u3)

u5 = u2u8=(u2 + u3)

u6 = u2
4
u2

u7 = u2
5
u3

u8 = voltage=u9

u9 = (1:0=u2 + 1:0=u3)
�1

u10 = u2
8
u9

u11 = function(x1; x2; x3; x4; u6; u7)

u12 = function(x1; x2; x3; x4; u6; u7)

u13 = x1x2x3;

where the states u11 and u12 are rather involved ex-
pressions. The code for this problem can be found
at the MDO Test Suite web site accessible from the
MDOB Homepage.

The reported results are for cases initiated from
the same starting points, for all methods.

Fig. 1 depicts interdisciplinary interactions in the
problem.

The following three subsections deal with solving
the problem by using the three methods under study.

The following conventions are used in all data ta-
bles.

� \Convergence" means the attainment of a point
that satis�es the Karush-Kuhn-Tucker (�rst-
order necessary) conditions for a critical point
of the problem within the maximum allowable
number of iterations (set at 10; 000). However,
when a particular problem was solved, known
solutions were always found rather than just
critical points of the problem.
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� \Work" is de�ned as the total number of disci-
plinary analyses performed. For MDF, work is
equal to the number of calls to the function eval-
uation procedure times the average number of
�xed point iterations per MDA times the num-
ber of \disciplines". For CO, the total number
of function evaluations at the subsystem level
and the number of system iterations is reported.
For IDF, we report the number of disciplinary
function evaluations times the number of \dis-
ciplines".

Function evaluations done during �nite-
di�erence computations are included in all
work.

� The superscript \F" added to the value of the
�nal objective indicates failure to converge to
a critical point within the allowable number of
iterations.

� In all tables, \{" means that the problem was
found inappropriate for a particular method,
and the tests were not run.

MDF Implementation

The MDF formulation has eight design variables,
three explicit constraints, and its statement is that
of the original problem. The problem was solved
using the method of feasible directions in iSIGHT.
The derivatives were computed using �nite di�er-
ences with the step size of 1%. The termination cri-
teria included the satisfaction of the �rst-order neces-
sary conditions for optimality, tolerances for the ab-
solute and relative change in the objective function
during several successive iterations, and the maxi-
mum number of allowable iterations. The MDF re-
sults are summarized in Table 3.

CO Implementation

For the CO approach, the system-level optimiza-
tion problem is given by

maximize �1
subject to c1 � 0:0001

c2 � 0:0001:

The system-level problem has �ve design variables:
�1, �2, �3, �11, and �12.

The Thermal Subsystem optimization problem is:

minimize c1
subject to h1 = 0:0

g1 = u11 � 85:0 � 0:0
g2 = u12 � 85:0 � 0:0;

where

c1 = (u11 � �11)
2 + (u12 � �12)

2 + (u2 � �2)
2

+ (u3 � �3)
2 + (u1 � �1)

2;

where the variables of the Thermal Subsystem are
xi; i = 1; : : : ; 4, u2, and u3.

The Electrical Subsystem optimization problem
is:

minimize c2
subject to g1 = u11 � 85:0 � 0:0

g2 = u12 � 85:0 � 0:0;

where

c2 = (u2��2)
2+(u3��3)

2+(u11��11)
2+(u12��12)

2;

where the variables of the Electrical Subsystems are
xi; i = 5; : : : ; 8, u11, and u12.

The system-level optimization problemwas solved
by a combination of the exterior penalty function
method and the method of feasible directions avail-
able in iSIGHT. The subproblems were solved us-
ing a sequential quadratic programming algorithm{
DONLP{implemented in iSIGHT. The CO results are
summarized in Table 4.

IDF Implementation

The compatibility constraints of the IDF formu-
lation were implemented as inequalities, since that
seemed to produce better results, given the optimiza-
tion software available in iSIGHT. The optimization
problem is:

maximize u1
subject to c1 � 0:0001

c2 � 0:0001
h1 = u4 � u5 = 0:0
g1 = u11 � 85:0 � 0:0
g2 = u12 � 85:0 � 0:0;

where the twelve design variables are xi; i = 1; : : : ; 8,
and four coupling variables �2, �3, �11, and �12.

The Thermal Subsystem evaluates u1, h1, and

c1 = (u11 � �11)
2 + (u12 � �12)

2;

while the Electrical Subsystem evaluates

c2 = (u2 � �2)
2 + (u3 � �3)

2:

The optimization problem was solved by a com-
bination of the exterior penalty function method and
the method of feasible directions available in iSIGHT.
The IDF results are summarized in Table 5.
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Initial Initial Initial Final Final
Point Objective Max. Con. Viol. Objective Max. Con. Viol. Work
1 7.7944D+01 2.1663D-08 6.3972D+05 1.2188D-03 83 � 3 � 2 = 498
2 6.8363D+03 -2.8956D-01 6.3972D+05 1.2188D-03 44 � 3 � 2 = 264
3 1.5111D+03 -4.2924D-02 6.3654D+05 1.4514D-03 44 � 3 � 2 = 264
4 1.4607D+03 -1.0249D-03 6.3694D+05 1.4211D-03 35 � 3 � 2 = 210

Table 3: Electronic packaging: MDF results.

Initial Initial Initial Final Final Work
Point Objective Max. Con. Viol. Objective Max. Con. Viol.

(System) (System)
1 7.7944D+01 0.00D+00 3.51968D+05 1.00D-04 (c1) 110 system iter

1.02D-08 (c2) 4886 + 8899 = 13785
2 6.8300D+03 -2.89D-01 6.57163D+05 2.30D-04 (c1) 123 system iter

1.30D-04 (c2) 6315 + 13577 = 19872
3 1.5111D+03 -4.20D-02 6.5D+04F 7.60D-03 (c1) 138 system iter

6.57D-09 (c2) 13414 + 12650 = 26064
4 1.4607D+03 -1.00D-03 6.5D+04F 4.80D-03 (c1) 94 system iter

1.11D-08 (c2) 10205 + 9396 = 19701

Table 4: Electronic packaging: CO results.

Initial Initial Initial Final Final Work
Point Objective Max. Con. Viol. Objective Max. Con. Viol.
1 7.7944D+01 2.248D-03 6.8131D+05 6.00D-04 (c1) 135 � 2 = 270

1.77D-06 (c2)
2 6.8363D+03 -2.890D-01 6.5367D+05 1.10D-04 (c1) 4488 � 2 = 8976

1.00D-04 (c2)
3 1.5111D+03 -4.200D-02 6.7740D+05 6.00D-04 (c1) 2053 � 2 = 2106

1.00D-04 (c2)
4 1.4608D+03 -1.000D-03 6.7577D+05 1.70D-04 (c1) 3437 � 2 = 6874

1.05D-05 (c2)

Table 5: Electronic packaging: IDF results.

Summary of Results

The initial set of test problems was solved using
the iSIGHT MDOL language based implementation
of MDF, CO, and IDF from several starting points.
The ratio of the successful runs to the number of at-
tempted runs is summarized in Table 6. By a \suc-
cessful run" we mean one that attains a critical point
of the problem, to a speci�ed degree of tolerance,
within the allowable maximum number of iterations.

All runs were originally planned to be attempted
from twelve starting points. Due to time limitations,
all the data could not be generated to date. This

explains the di�erence in the numbers of attempted
runs among the problems and methods shown in Ta-
ble 6.

During the problem formulation, we discovered
that some of the problems did not have a suitable
structure for the CO approach or for the IDF ap-
proach. We did not discard these problems, as they
may prove useful for testing other methods.

Given the small problem sample, and the limi-
tations mentioned earlier, we cannot make de�nitive
statements about the methods under study. However,
even this sample has demonstrated that the method
properties predicted by analysis tend to hold.
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Problem 1 2 3 4 5 6 7 8 9 10
Method
MDF 12/12 12/12 12/12 12/12 3/3 5/12 10/10 1/6 5/10 5/6
CO 4/4 2/5 3/5 4/5 5/5 4/5 0/5 { { {
IDF 4/4 5/5 4/5 { 4/5 3/5 { { { {

Table 6: Summary: number of successful runs / number of attempted runs.

Problem 1 2 3 4 5 6 7 8 9 10
Method
MDF 610 220 610 81 3234 5024 8730 245 1574 1353
CO 15626 19872 1785 2102 837 40125 691058 { { {
IDF 9530 8976 382 { 544 932 { { { {

Table 7: Summary: representative number of analyses for convergence.

Problem 1 2 3 4 5 6 7 8 9 10
Method
MDF 667 275 1025 77 10626 3035 6887 245 1547 1353
CO 13065 18005 2983 2102� 837� 40125� 691058� { { {
IDF 9640 6019 406 { 694 1071 { { { {

Table 8: Summary: average number of analyses for convergence. Note: numbers marked by an asterisk are
based on a single data point.

In particular, the following trends were observed with
respect to convergence and the number of function
evaluations.

MDF

The method converged to known solutions for the
majority of cases. However, for two of the problems,
the use of the �xed-point iteration to attain MDA
caused very unstable behavior, and the optimizer was
unable to converge from many starting points.

Given the small sample, the number of function
evaluations is not conclusive. However, for the cur-
rent dataset, MDF consistently requires fewer func-
tion evaluations than does CO (with the exception
of one problem). MDF did better than IDF for two
problems, and worse than IDF for three problems.
Interestingly, IDF did worse on problems that 1 and
2, that exhibit more typical MDO structure than do
problems 5 and 6, on which MDF performed poorly.

CO

The method was used to solve seven of the ten

problems. The system-level compatibility constraints
were actually implemented not as equalities, but as
inequalities, as this alleviates some of the numerical
di�culties associated with the equality constrained
system-level problem ([1]). Some adjustment of the
tolerances on the system-level constraints and on the
lower-level convergence criteria had to be done. A
general qualitative trend can be stated as follows:
larger tolerances on the system-level constraints and
smaller tolerances on the lower-level convergence cri-
teria lead to better chances for attaining overall con-
vergence.

Compared to the other two methods, CO typi-
cally required a signi�cantly larger number of func-
tion evaluations. It was more e�cient than MDF
only for problem 5, and it was always less e�cient
than IDF.

CO also seemed to be less robust than the other
methods, failing to �nd a critical point more fre-
quently. On the one hand, this feature con�rms the
analytical properties of CO. On the other hand, this
may be explained by our formulation of the prob-
lems, and by not spending a large amount of time on
�ne-tuning the method, which was intentional, as we
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mentioned.
Again, for a large test set, with a more evident

MDO structure, the di�erence in performance may
be less pronounced.

IDF

Similarly to CO, the compatibility constraints for
IDF were relaxed to inequalities.

IDF performed consistently better than CO on
our small sample of problems. However, one must
remember that IDF is less attractive than CO with
respect to the ease of integration and its handling of
the disciplinary constraints.

A representative number of analyses required for
each of the methods, for our test set, is summarized
in Table 7, while the average number of analyses is
given in Table 8.

General Comments

During the testing, we also considered the less
tangible metrics, such as the ease of implementation.
Here, the MDF was not typical because of the na-
ture of our problems. It was the easiest to implement
because our problems are small and relatively sim-
ple. However, in real applications, the integration of
MDA can be a formidable task.

For our small test set, CO and IDF were about
equally easy to implement. For large, more realistic
applications, we expect that CO will be easier to im-
plement, because of the way it handles disciplinary
constraints.

The current and future method studies are pro-
ceeding on several fronts. Information is accumulated
on other methods, such as the multilevel methods
(MAESTRO [23], [24] [25]) and concurrent subspace
optimization methods (CSSO [26], [27]); testing pro-
cedures are being �ne-tuned for the methods evalu-
ated in Phase I of the study; larger, more realistic
problems are being added to the problem test set.

In conclusion, while the results are by no means
complete, we have found this systematic study of
methods very informative. The tests in general con-
�rmed the expected numerical properties; however, a
signi�cant amount of further testing would be nec-
essary to explain the numerical behavior of methods
de�nitively. We invite other researchers to contribute
to accumulating systematic data, that will eventually
lead to a set of practical guidelines for the use of MDO
methods (please see the method evaluation web site
accessible from the MDOB Homepage).
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